摘要:轮廓是在亮度不同的区域之间有一个明显的变化,即明度级差突然变化而形成的。轮廓是构成任何一个形状的边界或外形线。本文在经典的Sobel算子的基础上进行了改进,增加了45°和135°两个方向。又根据轮廓提取的基本思想:对图像轮廓提取内部与外部像素点挖空。本文又提出了一种新的方法,即亮点的8个相邻像素点全部为亮点,则该点为内部点,反之为轮廓点。将所有内部点置为背景点,完成轮廓提取。文章结合改进的Sobel算子和新的方法,对图像进行轮廓提取。图像轮廓提取结果的连续性,抗噪性得到了明显的提升。
关键词:轮廓提取 Sobel算子 图像增强
目录
摘要
Abstract
引言
1 物体轮廓和形状特征提取与检测研究背景及意义-2
2 体轮廓和形状特征提取与检测研究现状-3
2.1经典算法-3
2.1.1 Roberts交叉算子-3
2.1.2 Sobel算子-3
2.1.3 Prewitt算子-4
2.1.4 LOG算子-4
2.1.5 Canny算子-5
2.1.6 Hough变换-5
2.1.7 边界方向直方图方法-6
2.1.9 小波变换法-6
2.2物体轮廓提取与检测的现代方法-7
2.2.1基于小波和相对矩的形状特征提取与检测方法-7
2.2.2基于蜂群算法的图像轮廓检测方法-7
2.2.3基于角点检测的图像形状特征提取方法-7
2.2.4基于多种子点提取三角网格特征轮廓的方法-8
3 Sobel算法的改进-9
3.1 sobel算法-9
3.2 sobel算法的改进-9
3.3 一种新的利用阈值分割图像的方法-11
3.4 改进后的sobel算子与阈值分割的方法相比较-13
3.5 基于改进后的sobel算子与阈值分割相结合的检测方法-13
3.6改进方法与阈值方法相结合-14
4 本文方法与其他方法相结合的检测效果-15
4.1 本文方法与灰度变换相结合-15
4.2 本文方法与中值滤波相结合-17
5 程序实现代码-20
结论
致谢
参考文献