数形结合思想在高中数学中的应用探索_数学教育.doc

  • 需要金币500 个金币
  • 资料包括:完整论文
  • 转换比率:金钱 X 10=金币数量, 即1元=10金币
  • 论文格式:Word格式(*.doc)
  • 更新时间:2015-06-02
  • 论文字数:3406
  • 当前位置论文阅览室 > 教育教学 > 教育管理 >
  • 课题来源:(小天天)提供原创文章

支付并下载

[摘要]数形结合思想是数学中一个重要的数学思想,利用这个思想我们在解题时可以把抽象问题转化成具体问题,使抽象思维和形象思维紧密地结合起来,即把抽象的数学语言与直观的图形结合起来,把数与形相互为用。本文通过对高考数学试题的分析,使中学生在解决数学问题的过程中体会数形结合的基本思想以及在利用此思想解题时应注意的问题并灵活的加以运用,寻求到最佳的解题方法。

[关键词]     数学思想     数形结合     解题方法     几何图形

 

[Abstract] combining the operation with figure mathematical thinking is an important mathematical thinking, We use this idea in problem solving abstract problems can be translated into specific issues, so that the image abstract thinking and thinking closely combined, which is an abstract mathematical language and visual graphics combine, with a few mutual shape for the end. Based on the Math papers detailed analysis of the topic. secondary school students solve math problems in the process of combining the operation with figure understand the basic thinking and the use of this thinking they should pay attention to problem solving and the flexibility to be used to find the best way to solve problems. 

[Key words]Mathematics thought       Number shape union    Problem solving method

Geometric figure

 

华罗庚先生曾说过:“数缺形时少直觉,形缺数时难入微,数形结合百般好,隔离分家万事非”。可见数形结合的重要性。用数形结合思想解题,就是利用代数的方法来研究图形的形状、大小及图形间的关系或运用图形的性质简化繁琐的代数运算和逻辑推理,在运用此方法时,要充分挖掘基本量的内涵。例如点在曲线上,则点的坐标为此曲线方程的根,绝对值和复数的模的几何意义等。用数形结合思想解题是高中数学中一个重要的方法,下面就结合近几年的高考试题,从数形结合思想所包含的两个方面来探索数形结合思想在高中数学中的应用。