水果切割中的数学问题.rar

  • 需要金币500 个金币
  • 资料包括:完整论文
  • 转换比率:金钱 X 10=金币数量, 即1元=10金币
  • 论文格式:Word格式(*.doc)
  • 更新时间:2014-05-12
  • 论文字数:4339
  • 当前位置论文阅览室 > 论文模板 > 企业管理 >
  • 课题来源:(julu1004)提供原创文章

支付并下载

摘要:用数学的方法来解决生活中的一些问题是很常见的一种方法,本文中正是运用了数学中非常重要的一种方法:定积分来解决水果切割的问题。本文首先考虑在二维平面中的可行性,分别模拟了圆形且果皮厚度处处相同以及圆形且果皮厚度不同这两种模型,得到的结论都是当切割位置不在中间的时候,应该选取较大的部分。在二维平面的基础上,把模型扩展到立体领域,又分别建立了两种模型:椭球型,以及去瓤留皮的椭球型.得到了另一种不同的结论:当水果是类似哈密瓜以及木瓜的时候,当切割点不在中间时,我们应该选择体积较小的那一部分。

关键词:定积分,切割,体积,比例

 

Abstract:Used in this article is very important in mathematics: A Method for cutting fruit, the definite integral to solve problems. Firstly, consider the feasibility of two-dimensional plane, respectively, and pericarp thickness to simulate the round and round, and everywhere the same two models with different skin thickness, the conclusion is not in the middle of the cutting position, it should select the more Large part. On the basis of two-dimensional plane, the model is extended to three-dimensional field, and two models were established: ellipsoid, and the remaining skin to the flesh ellipsoid.Got a different conclusion: when the fruit is similar to cantaloupe, and papaya, and when not in the middle of the cutting point, we should choose smaller portion sizes.

Keywords: definite integral, cutting, volume, and proportions