二维热传导方程的数值解_数学与应用数学.rar

  • 需要金币500 个金币
  • 资料包括:完整论文
  • 转换比率:金钱 X 10=金币数量, 即1元=10金币
  • 论文格式:Word格式(*.doc)
  • 更新时间:2014-12-12
  • 论文字数:4930
  • 当前位置论文阅览室 > 原创论文 > 文献综述 >
  • 课题来源:(阿里夫人)提供原创文章

支付并下载

摘要:本文是通过优化的KOND算法[1]对二维热传导方程进行数值离散化, 从而得到二维热传导方程的数值解。该算法所用的网格点数少,步长均匀一致。利用网格点之间的对称性,减少了计算机资源的存储量,提高了计算结果的精度与计算过程的速度。该方法与其它方法比较,具有计算精度高、速度快等优点,是求解偏微分方程数值解的比较优秀的方法,也是当前对地震波探究中常采用的方法。

关键词:KOND算法;二维热传导方程;近似解;泰勒展开

 

本文采用Y.KONDOH的优化近似解析离散化方法“Kernal Optimum Nearly- Analytical discretization Algorithm”(简称KOND算法[8、9、10])求解二维的热传导方程.KOND算法发表于1994年英国大不列颠杂志《计算数学与运用》.经文献查阅,在地震波勘探技术-正演与反演研究中常采用该方法[11], 从杨顶辉教授的研究成果[12]中可看出,KOND方法技巧独特,图像清晰,频散小,数值精度高;在数据处理过程中,减小了数据量存储,提高了计算速度,是方程数值解中较优秀的算法之一.本文就是选择KOND算法求解二维热传导方程的近似解从研究过程了解数学应用的思想,应用的方法技巧,提高数学价值与意义的认识.

在经典的教科书中,热传导系数设为常数a,但在实际问题中,人们往往要确定某时刻,某位置的传导性质,需要设定a为变系数,一般应该设定为a=a(t,x,y),本文仅设为a(x),以方便论述.

 

由于数学专业的特殊性,可能有很多公式在网页简介里显示不了,在原文中是有的。