带干扰的索赔次数为复合Poisson-Geometric过程的风险模型.rar

  • 需要金币500 个金币
  • 资料包括:完整论文
  • 转换比率:金钱 X 10=金币数量, 即1元=10金币
  • 论文格式:Word格式(*.doc)
  • 更新时间:2014-09-12
  • 论文字数:5732
  • 当前位置论文阅览室 > 原创论文 > 文献综述 >
  • 课题来源:(艾米)提供原创文章

支付并下载

摘要:对干扰因素下保费收入为复合Poisson过程,而理赔次数为复合Poisson-Geometric过程的风险模型进行研究,给出了生存概率满足的积分—微分方程,并运用鞅方法得出了破产概率满足的Lundberg不等式和一般公式,同时导出有限时间内生存概率的偏积分—微分方程.

关键词: Poisson-Geometric过程;鞅;破产概率;Lundberg不等式

 

   复合Poisson-Geometric过程是Poisson过程的推广,该过程在保留Poisson过程的诸多良好性质如独立增量性的同时,很好的解决了Poisson过程散度偏大的问题,使得改进的风险模型更加贴合实际的应用背景.毛泽春和刘锦萼引入了索赔次数为复合Poisson-Geometric过程的风险模型,并给出了破产概率公式及更新方程;张淑娜研究了一类推广的复合Poisson-Geometric风险模型,利用鞅方法和更新方法,获得破产概率的积分方程.

   作为对经典风险模型的推广,本文研究干扰因素下保费收入为复合Poisson过程,而理赔次数为复合Poisson-Geometric过程的风险模型,利用盈余过程的马氏性以及概率论、随机过程等领域的理论知识和方法,得到了生存概率满足的积分—微分方程及有限时间内生存概率的偏积分—微分方程,并运用鞅方法得出了破产概率满足的Lundberg不等式和一般公式,它对保险公司财务预警系统以及保险监管部门设计某些监管指标系统等有直接的参考和指导作用.